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Abstract—This paper proposes a high-performance scalable
quality-of-service (QoS)-aware memory controller for the packet
memory where packet data are stored in network routers. A major
challenge in the packet memory controller design is to make the
design scalable. As the input and output bandwidth requirement
and the number of output queues for routers increase, the memory
system becomes a bottleneck that limits the performance and
scalability. Existing schemes require an input and output buffer
that store packet data temporarily before they are written into
or read from the memory. With the buffer size proportional
to the number of output queues, the buffer becomes a limiting
factor for scalability. Our scheme consists of a hashing logic and
a reorder buffer whose size is not proportional to the number
of output queues and is scalable with the increasing number of
output queues. Another major challenge in the packet memory
controller design is supporting QoS. As an increasing number of
internet packets become latency sensitive, it is critical that the
memory controller is capable of providing different QoS to packets
belonging to different classes. To the best of our knowledge, no
published work on the packet memory controller supports QoS.
In this paper, we show our scheme reduces the SRAM buffer size
of the existing schemes by an order of magnitude whereas guaran-
teeing a packet loss probability as low as 10 20. Our QoS-aware
scheduler shows that it meets the latency requirements assigned to
multiple service classes under dynamically changing input loads
for multiple classes using a feedback control loop.

Index Terms—High-performance memory system, memory con-
troller, packet memory.

I. INTRODUCTION

NETWORK routers store and forward high-speed Internet
protocol (IP) packets. The bandwidth of the transmission

lines for the routers, often called line-rate, increases rapidly with
the increasing bandwidth requirement and advance in the op-
tical technology [1], [2]. The line-rate increases from 40 Gb/s
[optical carrier (OC)1-768] to 160 Gb/s (OC-3072) and beyond,
and twice the line-rate is required for the memory bandwidth to
store and retrieve data into and from the memory of the routers.
A packet is broken into smaller fixed size data called cells and
cells are written into and read from the memory. DRAMs are
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1OC levels describe a range of digital signals that can be carried on SONET
fiber optic network. The data rate for OC-n is n� 51.8 Mbits/s.

widely used to build a packet memory. To compensate for slow
DRAM access, hundreds or thousands of pins are often used to
access lots of bits in parallel.

To close the gap between slow DRAM and high-speed core
logic, many schemes were proposed in both computer architec-
ture and network areas. Some works [9], [10] try to improve
the performance of DRAM components. Other works [6]–[8]
try to reduce the bank conflicts in order to improve the average
bandwidth utilization. However, these schemes are not free from
packet loss due to bank conflicts.

Iyer et al. [3] proposed a scheme which guarantees no packet
loss at the cost of SRAM buffer. The SRAM buffer consists of
input and output buffers that are maintained per output queue.
In this scheme, cells are stored temporarily in the SRAM buffer
before being written into or after being read from the memory.
This SRAM buffer size is proportional to the number of output
queues in the system and the DRAM access time. A rapidly in-
creasing number of output queues in modern routers make this
scheme very costly in terms of die area. García et al. improved
this scheme by overlapping multiple accesses and random bank
selection scheme [4], [5]. Among all previous works, [4] is only
one that is reported to be reasonably scaled up to OC-3072
or higher. However, this scheme also suffers from a large area
penalty since the SRAM size is still proportional to the number
of output queues.

Another major issue in the packet memory controller design
is providing different quality-of-services (QoSs) to the packets
belonging to different service classes. Internet traffic is often
classified into multiple service classes. According to DiffServ
definitions [17], different service classes of internet traffic re-
quire different latency and packet loss requirements. To satisfy
these requirements, packets inside routers are classified and han-
dled according to their service classes. This becomes increas-
ingly important since voice over Internet Protocol (VoIP) and
video packets become a significant portion of internet traffic and
they are latency sensitive. Providing QoS is widely discussed
in many different applications. Relatively closely related works
include [11]–[16]. These works use the feedback control theory
to provide QoS to web servers. Their approaches are software
techniques to control either service rate or response latency of
the web servers according to the classification of packets. To the
best of our knowledge, no published work on the packet memory
controller provides QoS.

Our proposed method consists of a hashing and a reorder
buffer whose size is not proportional to the number of output
queues and is scaled up to OC-3072 and higher. The reorder
buffer consists of bank FIFOs and arbiters/schedulers. Our
proposed QoS-aware scheduler is capable of providing QoS to
the packets of different classes using a feedback control loop.
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The feedback control loop dynamically changes the scheduling
ratios among different classes as the input loads for different
classes change over time and meets the latency requirements
assigned to different classes. Our study shows that our scheme
virtually does not suffer from packet loss and leads to a much
less SRAM size and access latency while meeting the QoS
requirements.

Section II describes the packet memory system which in-
cludes the baseline router architecture, the memory architecture,
and the scalable memory controller. Section III describes the
simulator architecture and energy model. Section IV presents
the simulation results. Section V discusses the packet loss prob-
ability and the cost of our scheme by comparing the results with
existing schemes. Section VI gives our conclusion.

II. PACKET MEMORY SYSTEM

A. Baseline Router Architecture

The basic function of a router is to receive IP packets through
its input ports, find the output port based on IP address table
lookup, and forward packets to the output ports. Packets are
classified inside routers based on their service classes and
broken into fixed size cells. The cells are stored into output
queues before being scheduled and sent to the output ports.
Output queues may represent different service classes or
different flows such as user datagram protocol (UDP) or trans-
mission control protocol (TCP) connections, video streaming,
or VoIP. Output queues are used to provide different levels of
buffering or different QoS to different traffic streams. Multiple
output queues are grouped and mapped onto an output port
(or a line interface, e.g., OC192). Thus, as line-rate increases,
routers should support more output queues.

The output queues are built in the packet memory. The packet
memory is made of DRAMs [4]. Due to the speed mismatch
between fast core logic and slow DRAMs, bank interleaving
is used. To handle the bank conflicts, the packet memory con-
troller is equipped with read and write first-inputs–first-outputs
(FIFOs) which store cell read and write requests temporarily.
These FIFOs are often implemented as on-chip SRAMs for
high-speed access. Upon a write into the packet memory, a cell
is written into the write FIFO before being sent to the DRAM.
Upon a read, a cell read request is stored into the read FIFO
before being sent to the DRAM. DRAM returns the requested
cell into the read data buffer. Further information on the router
architecture can be found in [4] and [22].

B. Memory Architecture

The packet memory system is built from multiple DRAM
parts to provide a sufficient storage space to hold cells during
the round trip time (RTT). Several works discuss the optimal
buffering in core routers to avoid packet loss [4], [19]–[21].
In [4], it was argued that roughly one gigabytes of memory
is required for OC-768 to avoid packet loss upon congestion.
Fig. 1 shows a logical view of the packet memory. The packet
memory stores cells. Cells are connected through linked lists.
The linked lists are maintained per output queue as shown in
Fig. 1. If the cell size is bytes and the packet memory size is

bytes, the packet memory stores cells. To address this

Fig. 1. Logical packet memory view: blocks containing consecutive cells are
connected by linked lists. The first block and the last block are pointed by the
head and tail pointer for output queue = n separately.

cell, we need bits. To maintain linked lists, we need
bits for a pointer array. Previous works

[3]–[5] used 64 bytes for the cell size. We used the same cell
size for a fair comparison. If 64 bytes, 1 GB, the
packet memory stores a total of 16 million cells and a pointer
array is 16 M 24 bits. This is too large to be implemented
on a die. For this reason, the memory is partitioned into bigger
memory blocks that can hold multiple cells. And the linked lists
for these blocks are built instead as shown in Fig. 1. In the ex-
ample shown in Fig. 1, a block contains eight cells and a total
of 2 M blocks constitutes the packet memory. Within the block,
consecutive cells are addressed sequentially. One head and tail
pointer per output queue are maintained to access the beginning
and end of the linked list upon reading and writing a cell. A
cell in the packet memory is addressed using a block address
and a block offset. In Fig. 1, the first cell in the output queue
is pointed by the head pointer and its offset and the last cell is
pointed by the tail pointer and its offset. A new block is allo-
cated when a cell comes in and the last block of the linked list
for the output queue does not have space to store a cell. A block
is deallocated when all cells stored in the block are read.

A modern DRAM part consists of multiple banks to hide long
access latency and adopts a burst read and write to access a large
number of bits at once. To get the best performance out of the
memory system with a given number of parts and banks per part,
it is crucial to find an optimal cell mapping on multiple parts and
banks.

Fig. 2 shows timing diagrams for the cell writes in two dif-
ferent cell mappings. In this example, the memory system con-
sists of four DRAM parts and four banks per part. In Fig. 2, four
cells are about to be written into the packet memory and the first
three cells go to the output queue 0 and the next cell goes to the
output queue 1. In both Fig. 2(a) and (b), four cells are written
into four DRAM parts. In Fig. 2(a), the first cell is written into
four banks (B0, B1, B2, B3) of the part 0 (P0) over four DRAM
bursts. The second, third, and fourth cell are written into P1, P2,
and P3, respectively, in parallel with the first cell. In Fig. 2(b),
the first cell is written into the bank 0 of the four parts at the
first DRAM burst. The second, third, and fourth cell are written
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Fig. 2. Timing diagram for writing a cell in two cell mappings. (a) Cell is
mapped on four banks in one DRAM part. (b) Cell is mapped on four banks
across four DRAM parts. Four different colors represent four cells, respectively.

into B1, B2, and B3 of four parts during next three consecutive
DRAM bursts. We define a cell burst as the number of DRAM
bursts used to access a cell. In Fig. 2(a), the cell burst is four
DRAM bursts whereas it is one for Fig. 2(b).

To better represent various mappings, we define two terms:
group and logical bank. A group is defined as a collection of
DRAM parts that need to be accessed for writing or reading a
single cell. A logical bank is a collection of banks where a single
cell is distributed over. Fig. 2(a) has four groups and each group
has one logical bank, whereas Fig. 2(b) has one group and the
group has four logical banks.

A three-tuple, (G, B, C), is used to represent a cell mapping.
G, B, and C represent the number of groups, the number of log-
ical banks per group, and the cell burst size, respectively. The
three-tuple for Fig. 2(a) and Fig. 2(b) are (4, 1, 4) and (1, 4, 1).
In the following sections, we refer to a logical bank when we
say “bank.”

C. Scalable QoS-Aware Memory Controller

Two building blocks of the scalable QoS-aware memory con-
troller (SQMC) are a hashing logic and a reorder buffer as shown
in Fig. 3. The hashing logic takes an address for the cell write or
read request as an input and remaps the address into another ad-
dress so that the consecutive cell writes or reads are distributed
over multiple memory groups and banks as evenly as possible.
The write or read address consists of a block address and a block
offset. The hash function takes a block address and a block offset
as inputs and produces a group number, a bank number, and a
bank address as outputs. The hash logic will be further explained
in Section II-C1.

Even with a perfect hashing function, it is not possible to
avoid bank conflicts. A reorder buffer is used to buffer memory
read or write requests upon bank conflicts in computer applica-
tions [7]. The reorder buffer reorders cell requests when the bank
conflict happens. That is, the requests are not dequeued from
the bank FIFOs in the order of enqueues. The later requests can
be sent to the DRAMs before the earlier requests by the sched-
ulers depending on the chosen scheduling scheme. The reorder

Fig. 3. SQMC for the memory system that consists of four groups and two
classes (four banks per group or class).

buffer can be implemented in two different ways: a shared bank
FIFO or a per-bank FIFO. In the shared bank FIFO scheme,
bank FIFOs for all logical banks are combined into one shared
FIFO whereas in the per-bank FIFO scheme, the bank FIFO for
each logical bank is implemented separately. The shared bank
FIFO is usually more complex to implement while it takes less
area. Fig. 3 shows the per-bank FIFO implementation. In this
paper, we use per-bank FIFO. The per-bank FIFO will be called
bank FIFO throughout the paper.

Another major component of reorder buffer is three levels
of arbiters and schedulers: bank arbiter, class scheduler (or
QoS-aware scheduler), and read/write arbiter. The bank arbiter
chooses one schedulable (not busy) bank based on the arbitra-
tion method. This will be further discussed in Section II-C2.
The class scheduler chooses a class based on the weighted round
robin algorithm. This will be further discussed in Section II-C-3.
The read/write arbiter is just a simple round-robin arbiter which
alternates read and write scheduling. We have separate read
and write FIFOs because a write request consists of the data
payload along with a write address whereas a read request
consists of only a read address.

1) Hash Logic: Assuming that a block address, a block
offset, a group number, and a bank number are , , , and
bits, respectively, the hashing function is defined in (1)–(5).
And its implementation is shown in Fig. 4

(1)

(2)

(3)

(4)

(5)

In (1) and (2), %, , and represent modulo, bit left shift, and
bitwise OR, respectively. In (2), the bitwise OR is same as con-
catenation because is j-bit wide. , ,

, and in (1)–(5) represent cell position,
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Fig. 4. Implementation of the hashing function.

block address, memory address, and bank address, respectively.
They are explained in detail in the next paragraph.

In the proposed scheme, when a cell comes in and there is no
space to store the cell, i.e., an output queue is empty of cells or
the last block is full of cells, a free block is allocated randomly.
The block address is randomly chosen because we use its lower

bits to determine the group and bank number and the random
address gives a better hashing performance. In our scheme, the
cell position within a block is computed by (1). That is, the
cell position is shifted by the lower bits of the block address.
Without this shifting, writing into a block always starts with the
block offset 0. The shifting randomizes the initial block offset
and thus reduces potential conflicts that may be possible when
many blocks are synchronously allocated and writings to them
start from the block offset 0. This cell position is concatenated
with a block address in (2) to produce a memory address. The
lower bits of the memory address are assigned to the group
number by (3) so that consecutive cells within a block can be
spread over multiple groups first. The upper bits are assigned to
the bank and the bank address by (4) and (5). Our scheme can
take advantage of a large packet that goes to one output queue.
In this case, the cells belonging to the packet are spread over
multiple groups first by (3). Since group accesses can be done in
parallel without bank conflicts, this can minimize overall bank
conflicts.

In this paper, we define an output queue burst size as the
number of consecutive cells going to one output queue and use
the term to characterize the input traffic behavior. Consecutive
cells can go to one output queue for several reasons. First, a large
packet that spans cells in size enters the router. Then, we see

consecutive cells go to one output queue and the output queue
burst size is . Second, small packets whose size are one cell
long enter the router consecutively and they all go to the same
output queue. In this case, the output queue burst size is also .
In both cases, our hashing scheme takes advantage of the burst
and hashes consecutive cells to different groups first, which re-
duces bank conflicts. In this sense, the worst case bank conflicts
can happen when the output queue burst size is 1. In this case,
consecutive cells go to different output queues and then they all
can be ended up in the same group and bank. Our simulations in
later section assume the output queue burst size is 1 to simulate
the worst case.

The cost of the hash function is very low because the opera-
tions in (1)–(5) are just bit-shifting, addition, and concatenation.

2) Bank Arbiter: We implemented two arbitration schemes
for the bank aribiter. The first is longest queue first (LQF) and
the second is longest latency first (LLF). Each bank FIFO is
associated with a write and a read pointer. The difference be-
tween these two pointers gives the occupancy of the FIFO in
terms of cells. LQF compares the occupancy of bank FIFOs in
the same group and chooses one with the smallest occupancy.
With a 32-entry bank FIFO, the occupancy register requires only
6 bits. The 6-bit comparators are not costly. For LLF implemen-
tation, we need a little more hardware support. Each bank FIFO
entry is associated with a 16-bit enqueue time register. When a
cell read/write request is enqueued into a bank FIFO, we save
the global cycle counter value into the enqueue time register.
When scheduling bank FIFOs, the LLF scheduler compares the
enqueue time of cells at the head of the each bank FIFOs and
chooses the bank with the largest cell latency. This is a little
more costly compared to LQF.

3) QoS-Aware Scheduler (or Class Scheduler): The LQF op-
timizes the FIFO sizes. However, it does not optimize the la-
tency. For instance, if a cell is enqueued into an almost empty
FIFO while there are FIFOs whose occupancy is larger than the
almost empty FIFO, the dequeue of the cell in the almost empty
queue is delayed until all other FIFOs become almost empty.
The LLF, on the other hand, tries to reduce the latency of cells
too much, which results in an increasing chance of FIFO over-
flow. Thus these two are not a good candidate for the QoS-aware
scheduler. From this point on, we will use QoS scheduler instead
of QoS-aware scheduler for short.

The major challenge in QoS scheduler is to meet both la-
tency and packet loss requirement assigned to each class. While
the latency requirement is a latency bound that the memory
controller should guarantee with a very high probability, the
packet loss requirement is translated into a probability of packet
loss. In packet memory controller, packet loss can happen for
two reasons. First, it happens when the FIFO overflow happens.
Second, when the memory controller does not meet the latency
requirement for a latency sensitive packet, e.g., VoIP or video
packet, the packet is dropped at the destination because it is no
longer useful. For this reason, the QoS scheduler should be ca-
pable of meeting the latency requirement not to introduce ad-
ditional packet loss other than FIFO overflows. Another chal-
lenge in the QoS scheduler design is to guarantee the maximum
latency through the memory controller under dynamic traffic
loads for different classes.

The proposed QoS scheduler is capable of two things. First, it
guarantees the maximum cell latency through FIFO with a spec-
ified probability. Second, it is capable of adjusting scheduling
weights for different classes dynamically as a response to the
input load changes. Fig. 5 nicely depicts these two concepts. It
shows a typical probability density function (PDF) of the cell
latency through FIFO. This latency is called FIFO latency from
this point on. The latency requirement is specified by two pa-
rameters and . is a target latency threshold and is
the fraction of cells that have the cell FIFO latency larger than
the target latency threshold. Thus, the line itself in PDF spec-
ifies the latency requirement. As the input load changes for a
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Fig. 5. PDF of FIFO latency distribution. Y -axis is logarithmic. The line spec-
ifies the latency requirement.

certain class, the line shifts to the right or left as more or less la-
tency violations happen. The QoS scheduler adjusts weights for
classes according to the load changes and allocates more or less
bandwidth to different classes so that the PDF lines for different
classes stay at the same position.

To achieve this, the QoS scheduler collects two pieces of
data every predetermined cycles. This is called weight up-
date interval. The first piece of data collected is the total number
of cells dequeued from bank FIFOs for each class during the
weight update interval. The second piece is the number of cells
whose FIFO latency is larger than the target latency . Let us
use and to represent these data, respectively. Then, using
an equation given in (6), we detect the load change for class

(6)

(7)

(8)

If is larger than , becomes positive and the
scheduler detects increasing latency violations and increases the
weight for class . Otherwise, i.e., becomes negative, the
scheduler detects less violations, and decreases the weight. One
problem with this method is that the detection requires a division
operation which is costly. To avoid that, we multiply both sides
by as in (7). We use to simplify as in (8).

is a fixed number and is a function of the input load.
While requires a multiplication, it can be done by a
table lookup. For this, we divide the maximum range for the
into multiple sub-ranges. This is shown in Fig. 6. In the example
shown in Fig. 6, the range is broken into four sub-ranges.
Then, we multiply by median values that represent each sub-
ranges. These predetermined are stored in the ref table.
Given , the address decoder in Fig. 6 produces the sub-range
number , which is used as an index for the table lookup. The
address decoder in Fig. 6 can be implemented using several most
significant bits (MSBs).

Fig. 7 shows the basic components of the QoS scheduler (or
class scheduler), which is based on a feedback control loop.
Each group requires two QoS schedulers: one for the write
FIFOs and the other for the read FIFOs.

Fig. 6. Detailed diagram for accumulators and reference table.

Fig. 7. QoS scheduler (or class scheduler).

The first sub-block called accumulators and weighted round
robin (WRR) scheduler performs two operations. The inputs to
this sub-block are the FIFO latency of the dequeued cell that
was at the head of each bank FIFO and the FIFO occupancies
of all bank FIFOs. The detailed diagram for accumulators is
shown in Fig. 6. The accumulators are counters, shown as INC in
Fig. 6, which are incremented when the FIFO dequeue happens
and store and for every weight update interval, where

refers to the class. In Fig. 7, refers to the current weight
update interval. At the end of each weight update interval, we
determine the sub-range, , based on as explained in the
earlier paragraph. along with is fed back for the comparison
with , where is from the table lookup. is omitted in
Fig. 7 to avoid confusion. is used to find a reference value,

for given .
The QoS scheduler performs a weighted round robin al-

gorithm among different classes. The WRR assigns different
weights to different classes as the weights represent the band-
width allocation for different classes. Once the weights are
loaded into the weight counters for each class initially, the
counters are decremented as cells are dequeued from the cor-
responding classes. Different classes are serviced initially in a
round robin fashion. When the weight counter for a certain class
becomes zero, the class is no longer serviced until either of two
cases happens: all other weight counters become exhausted or
no more cells are in the FIFOs of other classes, i.e., no traffic
for other classes. In both cases, new weights are loaded into
the weight counters and a new round starts. The WRR is a
work-conserving algorithm.

Second, another major component of the QoS scheduler is
a weight generator, shown as in Fig. 7. This weight gener-
ator computes new weights for all classes every weight update
interval. The basic operation of computing new weights is de-
scribed next. The , which is quantized in (8),
is compared against . The difference becomes a quantized
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error . Depending on , , and , we up-
date the weight accordingly. A general update equation
is shown

(9)

We choose the equation in (10) for the function since it is
simple to design when compared with other alternatives and it
gives a good performance in simulations

if ,
if or

and
if and

(10)

where

(11)

(12)

When the is positive, it means the latency of too many
dequeued cells are larger than the target latency. Thus, we in-
crease the scheduling weight by so that the class can be
scheduled more often. is ideally defined as the error, ,
divided by the target value, , as in (11). This makes the
weight increase proportional to the magnitude of the normal-
ized error. To avoid a division operation, the division is approx-
imated and implemented as a shift operation as in (12). is
the bit position of the most significant 1 in . For instance,
if is , is 4 because bit 4 is the most sig-
nificant 1. When is and is ,

becomes . Finding and shifting operation can
be implemented with simple AND gates and multiplexers. When
the is negative, it means that the latency of too few cells
are larger than the target latency threshold. Thus, we decrease
the scheduling weight by 1 so that the weight does not decrease
suddenly to a small number after a large error. The minimum
number for the weight is 1. Based on new weights, the QoS
scheduler performs weighted round robin until the next weight
update.

III. TOOLS FOR EVALUATING PACKET MEMORY CONTROLLER

A. Simulator Architecture

An event driven simulator, shown in Fig. 8, is developed
to evaluate our proposed memory controller. The simulator
consists of five major components: input traffic generator,
hash function logic, schedulers, statistics collection, and event
handler. Depending on the input load, core clock, memory
clock frequency, and DRAM parameters, the event handler for
the input traffic generator generates cells and they are hashed
by the hash function logic and enqueued into FIFOs. The event
handler for the schedulers schedules cells based on the sched-
uler type. The event handler for statistics collection collects

Fig. 8. Components of simulator.

various statistics for logging as well as computing average,
variance, peak values at the specified intervals.

Our simulator measures various characteristics such as FIFO
occupancy, read or write FIFO latency, hashing performance,
and FIFO occupancy and latency distribution under different
configurations. Parameterized inputs to the simulator include
the number of groups, number of banks per group, burst length
of DRAM, DRAM clock frequency, core logic clock frequency,
row cycle time (tRC) of DRAM, bank arbitration scheme, class
scheduler type, input traffic burstness, input traffic load. For the
QoS scheduler evaluation, additional inputs used are target la-
tency threshold, latency violation target, weight update interval,
input rate change intervals, and class ratios.

The outputs include average, variance, peak values for the
FIFO occupancy, and FIFO latency. In the QoS scheduler eval-
uation, additional outputs produced are the sampled input rate
variation, scheduling weight variation, FIFO occupancy varia-
tion, and FIFO latency variation for different classes over time.

B. Energy Model

We used the CACTI tool [18] to estimate the energy consump-
tion for the SRAM FIFOs of the proposed memory controller.
We evaluated the design using two different technologies: 90
and 65 nm. The results are shown in Section V-C.

IV. EXPERIMENTAL RESULTS

A. Experimental Setting

Simulations are broken into three main categories. In the first
category, we evaluate the performance of the hash function. In
the second, we evaluate the performance of the single class ver-
sion of our memory controller. In this configuration, the reorder
buffer does not have a class scheduler and supports only single
class traffic. In the third, we evaluate the performance of the
multi-class version of our memory controller which includes the
class scheduler (or QoS scheduler).

All test cases are created so that they can simulate the worst
case behavior as in [4] and [5] for a fair comparison. For in-
stance, maximum input load values are used in most of tests
other than tests where we measure the effects of the different
input load factors. Also, input patterns are designed so that they
can introduce worst case bank conflicts.

The simulator generates cells based on the given load factor.
When the cell is created, a random output queue number is as-
signed to the cell. The output queue burst size is 1 for all tests
to simulate the worst case except for the hash performance test
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(see Section IV-B) and the output queue burst size test (see
Section IV-C-4). Using 1 for the output queue burst size means
that a different output queue number is assigned for every cell
created. It increases the probability of consecutive cells going
to only one group and one bank, which creates the worst case
FIFO occupancy and latency.

In the test cases for the QoS scheduler, control parameters
are varied significantly so that the performance can be measured
under the worst case. For instance, the ratio of input loads for
two classes are varied from 1:9 to 9:1 to test the performance
under a large input swing. Also, the input rate change interval
is as small as 100 ns to simulate the rapidly changing inputs.

Assuming DDR DRAM parts, the DRAM burst size is 4 and
the tRC for DRAM is eight memory clock cycles throughout
the simulations. Using DDR DRAMs with the burst size of 4, a
cell read or write can be issued to DRAM memories every two
memory clock cycles.

All simulations were run to measure statistics for the 1 s pe-
riod. In all simulations, average, variance, maximum FIFO oc-
cupancy, and FIFO latency are measured. The delay is measured
in terms of memory clock cycles. Additional information such
as scheduling weight variation, FIFO occupancy distribution,
and FIFO latency distribution are measured in the QoS sched-
uler tests.

In the following sections, the simulation results for three cat-
egories are presented. First, Section IV-B discusses the perfor-
mance evaluation for the hashing scheme. Second, Section IV-C
presents various results from the simulations for the single class
version of our memory controller. The results include compar-
ison of LQF and LLF for the bank arbiter, optimization of bank
FIFO structure for LQF, the effect of the output queue burst size
for LQF, the FIFO occupancy, and FIFO latency distribution for
LQF. Finally, Section IV-D shows the simulation results for the
two-class version of our memory controller. The memory con-
troller uses LQF as a bank arbiter because the latency require-
ment is guaranteed by the QoS scheduler (or class scheduler)
and the LQF arbiter complements the class scheduler by opti-
mizing the FIFO size. The results show how well the latency
requirements are met by the proposed scheme, how well the
scheme reacts to the dynamic input rate change for the different
classes, and the effect of the input change rate.

B. Evaluating Hash Function Performance

The performance of the hashing scheme is evaluated from
measuring the cell request distribution over multiple banks and
groups. When a new cell request is generated in the simula-
tion, an output queue number is randomly assigned to the cell.
Each output queue has a running counter that keeps track of a
cell sequence number which starts at 0 in the beginning. De-
pending on the output queue burst size, the same output queue
number is assigned to the consecutive cell requests. This output
queue number and cell sequence number for that output queue
are mapped on a block address and a block offset, and they are
mapped on the group, bank, and bank address by the hashing
function. The average and variance of the cell requests seen by
the reorder buffer for two output queue burst size (burst size
and burst size ) are shown in Fig. 9. In this experiment, we
varied the burst size from 1 to 16 but we show only two data

Fig. 9. Average and variance of cell read and write requests for 32 banks across
8 groups. Simulations are done for two output queue burst sizes, 1 and 8.

Fig. 10. Comparing average and maximum FIFO occupancies and cell read/
write FIFO latencies through bank FIFOs for LQF and LLF arbiters (Groups
= 4, Banks per group = 8).

point since two data points are sufficient to show the trends.
The reorder buffer consists of eight groups and four banks per
group and thus the total number of banks is 32. Good distri-
bution among 32 banks is observed for the hashing function.
The measured average requests for two burst sizes are almost
same because roughly the same number of requests are served
by each bank. The variance of requests indicates the burstness
of the input traffic to each bank. A larger variance means a larger
burstness. The variance for the burst size 8 is smaller than the
burst size 1 because eight consecutive requests in the burst size
of 8 are distributed over eight different banks while eight con-
secutive requests in the burst size of 1 can go to one bank in the
worst case.

C. Evaluating the Single Class Version of SQMC

1) Comparing LQF and LLF Bank Arbiters: Fig. 10 shows
the measured average and maximum FIFO occupancies and de-



296 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 3, MARCH 2008

Fig. 11. Comparing the average FIFO occupancy for three different cell map-
pings.

lays of two arbitration schemes. The left figure compares the
average and maximum FIFO occupancies for the LQF and LLF
arbiter with respect to a load factor. The FIFO occupancy is
measured per bank FIFO. The load factor varies from 0.1 to
0.9, where 0.9 means that the input traffic is equivalent to the
90% of the available memory bandwidth. In this simulation, the
average FIFO occupancies are less than one entry for both ar-
biters whereas the maximum lengths reach 12 for LQF and 16
for LLF.

In the right side of Fig. 10, the average and maximum cell
read/write FIFO latencies for two arbiters are compared. The
LLF arbiter optimizes the maximum delay, not the average
delay. Thus, the average delay for the LLF arbiter is slightly
larger than that for the LQF arbiter whereas the maximum delay
shows the opposite as the load gets close to 0.9.

In the rest of this paper, we show the results for the LQF ar-
biter as we use the LQF as the bank arbiter that is combined
with the QoS scheduler in the multi-class version of our sched-
uler. This is because the QoS scheduler guarantees the latency
requirements assigned to each class. As long as the latency is
guaranteed by the QoS scheduler globally, the bank arbiter only
needs to minimize the overall FIFO occupancy to avoid the
FIFO overflow. LQF is best suitable for this.

2) Mapping Cells on DRAM Parts: For a given number
of physical DRAM parts, the performance of hashing and
reordering can vary depending on how to map a cell on physical
DRAM parts. Fig. 11 shows the average FIFO occupancies
for three different mappings. All three mappings use the same
number of parts and have the same hardware complexity be-
cause the same number of bank FIFOs are required for all three
mappings.

In mapping 1, two cells can be written or read simultaneously.
The cell burst length of 1 takes one DRAM burst to read or write
a cell. On the other hand, in mapping 3, it takes four DRAM
bursts for one read or write transaction. In this case, eight cells
can be simultaneously written into or read from the memory.
From the results, we observe the following: it is better to spread

Fig. 12. Comparing total FIFO size requirements for different bank numbers
(Groups = 4).

Fig. 13. Comparing the average FIFO occupancy for four output queue burst
sizes, 1, 4, 8, and 16. (Groups = 8; Banks per group = 8).

a cell payload over many physical parts to reduce the access
latency because it is less affected by bank conflicts.

3) Optimal Bank Numbers per Group: As the number of
banks per group increases, its average FIFO occupancy be-
comes smaller. However, the total FIFO occupancy (average
FIFO queue length number of banks) does not decrease
proportionally because of the increasing number of banks. As
shown in Fig. 12, beyond the eight banks, the gain becomes
marginal.

4) Effect of Different Output Queue Burst Sizes: Fig. 13
shows the effect of different output queue burst sizes. Since our
hashing function well distributes cells with large output queue
burst sizes as we have seen in Fig. 19, the average FIFO occu-
pancy decreases as the cells become more bursty in terms of the
output queue number.

5) FIFO Occupancy Distribution of LQF Arbiter: Fig. 14
shows the measured probability mass function of the FIFO oc-
cupancy distribution. The probability decreases exponentially
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Fig. 14. Comparing FIFO occupancy distribution for different loads (Groups
= 4; Banks per group = 8).

Fig. 15. Comparing FIFO latency distribution for different loads (Groups= 4;
Banks per group = 8).

with the increasing FIFO occupancy. The slope gets steeper as
the load gets smaller.

6) FIFO Latency Distribution of LQF Arbiter: Fig. 15
shows the probability density function of FIFO latency dis-
tribution. Again, the probability decreases exponentially with
the increasing FIFO latency. As the load increases, more bank
conflicts happen, which increases the FIFO occupancy and thus
the latency of the cells in the FIFOs.

D. Evaluating a Multi-Class Version of SQMC

We implemented a multi-class version that supports two
classes. As stated in the earlier section, we use LQF as the
bank arbiter that is combined with the QoS scheduler. In these
simulations, the main focus was to measure the performance of
the QoS scheduler by showing how well the scheduler meets
the latency requirements for two classes under varying traffic
loads. The latency requirement is given in the following format:

of cells have the FIFO latency larger than cycles. From

Fig. 16. Comparing average FIFO latency for five different class ratios (Groups
= 4; Banks per group = 8).

Sections IV-D1–IV-D5, we assume that the class 0 has higher
priority than the class 1 and a tight latency requirement is given
to the class 0 whereas a loose one is given to the class 1. The
latency requirement for class 0 in Sections IV-D1–IV-D5 is
that 0.1% of cells have the FIFO latency larger than 60 cycles,
whereas the requirement for class 1 is that 1% of cells have
the FIFO latency larger than 400 cycles. The requirements are
carefully chosen so that the total aggregate bandwidth required
to meet the latency requirements is close to 0.9 of the total
available memory bandwidth. This is done to introduce a severe
congestion and see the benefit of the QoS scheduler.

In these simulations, the weight update interval for the de-
queue weight change is set to 100 s. That is, every 100 s, we
sample the latency distribution and adjust the scheduling weight
for class 0 and 1 if necessary. 100 s is chosen for the weight
update interval because the interval shorter than that gives too
small number of dequeued cells and the interval longer than
that acts slowly to the input rate change. For the number of
sub-ranges for in Figs. 6 and 10 is used. As the number in-
creases, the quantization errors become smaller. But, our exper-
iments show that for larger than 10 sub-ranges, the gain was
marginal.

In the first set of tests (constant input load case), we vary the
ratio of input loads for class 0 and 1 from 1:9 to 9:1. Once the
ratio is set initially, it remains the same throughout the simula-
tion in these tests. In the second set of tests (dynamic input load
case), the ratio of the input loads between class 0 and 1 changes
dynamically in the middle of simulation to see how well the
scheduler tracks the traffic variations.

1) Average FIFO Latency for the Constant Input Load Case:
Fig. 16 shows the average FIFO latency of cells for five different
class ratios (class0:class1), 1:9, 3:7, 5:5, 7:3, and 9:1. The total
aggregate load for class 0 and 1 is set to 0.9 of the available
memory bandwidth. Thus, 1:9 implies that the input load for
class 0 is 0.09 and the one for the class 1 is 0.81. For the 1:9
ratio case, the average latency is also small as the FIFO occu-
pancies are small. For medium input loads from 3:7 to 7:3, the
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Fig. 17. Distribution of FIFO latency for class 0 with three different class ratios
(Groups = 4; Banks per group = 8 constant load).

Fig. 18. Distribution of FIFO latency for class 1 with three different class ratios
(Groups = 4, Banks per group = 8, constant load).

latencies are roughly 28 cycles. For the 9:1 ratio case, the latency
increases to 35 cycles because more cells have larger FIFO la-
tencies as shown in Fig. 17.

2) PDF of FIFO Latency Distribution for the Constant Input
Load Case: Figs. 17 and 18 show the PDF of FIFO latency for
three different class ratios 1:9, 5:5, and 9:1. The latency require-
ment for the class 0 is that 0.1% of the cells have the FIFO la-
tency larger than 60 cycles. One interesting point in Fig. 17 is
that there is a crossover point between 5:5 and 9:1 around 80 cy-
cles. In the 9:1 case, the scheduling weight for the class 0 stays
high almost always, which leads to less number of violations
beyond the 80 cycles. Meanwhile, in the 5:5 case, the sched-
uling weight for the class 0 fluctuates due to relatively a small
input load. This introduces more numbers of violations beyond
the 80 cycles when the weight is small. This finding is consis-
tent in Fig. 18. Although the input load for the class 1 decreases
in the order of 1:9, 5:5, and 9:1, 9:1 has the worst performance.
This is because the QoS scheduler aggressively allocates large

TABLE I
ACHIEVED N FOR CLASS 0 WITH VARYING INPUT LOAD RATIO

Fig. 19. Input load and scheduling weight for class 0 with three different class
ratios (Groups = 4; Banks per group = 8, dynamic load).

bandwidth for class 0 to meet the tight latency requirement of
class 0, which leaves small bandwidth for class 1 as expected.
Table I numerically shows how well this latency requirement
for the class 0 is met by the QoS scheduler for five different ra-
tios. The second row of table shows the achieved value for
in Fig. 5 for the constant input load case. All ratios except for
the 9:1 achieve less than 0.1%. Severe load for class 0 in the 9:1
case results in 0.13%, which is slightly larger than the target .

3) Weight Change for the Dynamic Input Load Case: Fig. 19
shows the input load and scheduling weight changes for class 0
over 100 ms of the simulation time. Three lines represent three
different input load ratios between class 0 and 1. The top plot in
Fig. 19 shows the input loads of class 0 for three ratios. Initially,
the ratios between class 0 and 1 are 5:5 for all three lines and
after 10 ms they become 7:3, 8:2, and 9:1, respectively. During
the periods where ratios are 5:5, the weights for three ratios fluc-
tuate as the weight increase upon large errors suppresses the er-
rors in the following cycles. This is shown in the bottom plot.
As soon as the ratios change to 7:3, 8:2, and 9:1, the weights
track the changes to meet the latency requirements. They do not
vary much compared to the 5:5 periods because weights remain
high to meet the latency requirements aggressively, which reg-
ulates the error rates. The weight for the class 1 almost does not
change much since it meets its loose latency requirement and so
it is not shown here.

4) PDF of FIFO Latency Distribution for the Dynamic Input
Load Case: Fig. 20 shows the PDF of the latency distribution
for class 0. Three lines represent again PDF for three different
ratios, 7:3, 8:2, and 9:1. Again, initially the ratios for all three
lines are 5:5. They become 7:3, 8:2, and 9:1 after 10 ms. Every
10 ms, the input load ratios alternate between 5:5 and 7:3, 8:2,
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Fig. 20. Distribution of FIFO latency for class 0 with three different class ratios
(Groups = 4, Banks per group = 8, dynamic load).

Fig. 21. Scheduling weight for class 0 with three different input load change
intervals (Groups = 4, Banks per group = 8).

or 9:1. In Fig. 20, all three lines are almost overlapped with each
other. They are pretty close to the latency distribution of 5:5 in
Fig. 17. This is because during the half of simulation time, input
load ratios are 5:5 and performance in these periods dominates
the distribution. The third row of Table I shows the achieved
value for in Fig. 5 for the dynamic input load case. Compared
with the static input load case in the second row, the values are
closer to 0.1% since the periods with 5:5 ratios dominate the
performance.

5) Response to Rapidly Changing Input Load: One of the
key metrics when evaluating the QoS scheduler is how well it
tracks the rapidly changing inputs. In this simulation, we vary
the input load change interval from 1000 to 10 000 000 ns while
we fix the weight update interval to 100 s. Again the input load
ratio for class 0 and 1 alternates between 5:5 and 9:1. Figs. 21
and Fig. 22 show the weight changes for class 0 and the PDF of
the latency distribution for class 0, respectively. For the case

Fig. 22. Distribution of FIFO latency for class 0 with three different input load
change intervals (Groups = 4, Banks per group = 8).

TABLE II
ACHIEVED N FOR CLASS 0 WITH VARYING INPUT LOAD CHANGE INTERVALS

where the input load change interval is 1000 ns, the weight
ranges from 10 to 25 throughout the simulation as shown in
Fig. 21. For 100 000 ns case, the weight ranges from 15 to 30.
These indicate that the feedback scheduler acts as a low pass
filter for the rapidly changing input load to meet the latency re-
quirement. The scheduler performance is shown in Fig. 22 and
Table II. Table II shows that the scheduler performs consistently
well with varying input load change intervals.

V. ANALYSIS

A. Overflow Probability

The proposed scheme does not guarantee no overflow. How-
ever, its probability decreases significantly as the bank FIFO
size increases as shown in Fig. 14. Overflow upon writing cells
translates into packet loss. However, a small buffer with a little
bit of speedup in the data path makes it possible to avoid packet
loss upon overflow considering a very small overflow proba-
bility. For instance, if a bank FIFO is full when a cell needs to
be written into the FIFO, it can be stored in a small buffer. As-
suming reading from the bank FIFO has a speedup over writing
into it and overflow is transient, the speedup will free the FIFO
entries and the buffered cell will be processed by the FIFO
without loss. Overflow upon reading cells translates into de-
laying the access by stalling the read scheduler. Again, a little
speedup can make this delay transient.

To compute the probability of overflow, we may derive a
queueing model and use the Chebychev bound to compute the
overflow probability but the bound is not tight enough to give
any meaningful information. Instead, we measure the distribu-
tion from simulation and estimate the probability by projecting
the lines in Fig. 14. For load , 1.5 additional FIFO entry
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TABLE III
COMPARING SRAM AREAS FOR TWO SCHEMES

drops roughly the overflow probability by one decade. With a
24-entry deep bank FIFO (SQMCv1), the probability will be
roughly 10 . With a 32-entry deep bank FIFO (SQMCv2),
the probability will be roughly 10 . Core routers should
be very robust in terms of packet loss. One year is translated
into 1.26 10 memory clock cycles assuming the memory
clock runs at 400 MHz. Since the FIFO occupancy was logged
every two memory clocks, 10 overflow probability means
we lose a cell every 1.90 month per memory controller. Con-
sidering that, achieving 10 less probability in SQMCv2 by
allocating 33% more area seems to be a reasonable tradeoff.
Both SQMCv1 and SQMCv2 are a single class version of our
memory controller. For the multi-class version, bank FIFOs
need to be duplicated. Since the input load is shared by multiple
classes, the input load seen by one class’s bank FIFO becomes
smaller. Thus, the overflow probability becomes even smaller
for the multi-class version.

As stated earlier, the 64-byte cell size was used throughout the
simulation for a fair comparison with previous works. However,
our results are still valid for bigger cell sizes. For instance, for a
twice bigger cell size, 128 bytes, the load seen by the bank FIFO
becomes half because it takes twice longer time to transfer the
payload. But, the FIFO entry size needs to be doubled. Thus, the
roughly the same area is required for FIFOs to achieve the same
overflow probability.

In our method, packet loss, i.e., overflow probability, is a
function of the FIFO size and the input load. As the line-rate
increases, as long as we manage the input load per bank FIFO
same, the overflow probability remains the same for a given
FIFO size. To keep the input load same, we need to increase
the number of groups proportional to the line-rate increase.

B. Area

In Table III, RADS is the scheme reported in [4], SQMCv1
is our scheme with 24-entry deep bank FIFOs, and SQMCv2 is
with 32-entry deep bank FIFOs. Both SQMCv1 and SQMCv2
are a single-class version of our memory controller. This was
done for a fair comparison because RADS was supporting only
a single class. The SRAM areas used to implement the FIFOs
in our scheme and in [4] are compared in Table III. RBAU in
[4] is reported to take roughly four times less area than RADS
for OC-768 and OC-3072. Our SMCv1 is better than RBAU by
an order in OC-3072. More importantly, our scheme works for
hundreds of thousands of output queues without any additional
area penalty whereas their schemes will be forced to increase
the SRAM area significantly and may not be feasible.

For a multi-class version of our memory controller, we need
to duplicate the bank FIFOs by the number of classes and
add area for the enqueue time registers. The results are shown
in Table IV. SQMCv3 is a two-class version with 24-entry

TABLE IV
SRAM AREAS FOR TWO-CLASS VERSION OF SQMC

TABLE V
COMPARING THE POWER CONSUMPTION BY SRAM FIFOS

FOR 90- AND 65-nm TECHNOLOGY

deep bank FIFOs and SQMCv4 is a two-class version with
32-entry deep bank FIFOs. They take roughly twice the areas
of SQMCv1 and SQMCv2, respectively.

A formula to compute the SRAM areas for our schemes is
shown in (13). The structure of the SRAM area consists of three
major components: write request FIFOs, read request FIFOs,
and read data buffer. The formula for the area is broken into
these three components. In (13), , , , and stand for the
number of classes, groups, banks, and FIFO entries, respec-
tively. represents the bit width of an enqueue time reg-
ister. 512 (in bits) and 19 are used for data and addr, respectively.

is 0 for a single-class version and 16 for a two-class
version. is 1 for a single-class version and 2 for a two-class
version. is 1 for OC768 and 4 for OC3072. is 8. is 24
for SQMCv1 and SQMCv3 and 32 for SQMCv2 and SQMCv4

(13)

We compared only SRAM areas for different schemes be-
cause it is a dominant factor in terms of die area. Custom logic in
our memory controller scheme contains small adders, shifters,
and logic gates, which are relatively cheap. Our scheme and pre-
vious work use the same packet memory size.

C. Power Consumption

We estimated the power consumption for SQMCv1 and
SQMCv2 supporting OC-3072 by using the CACTI tool. We
assume the memory clock runs at 400 MHz. The results are
shown in Table V. If the technology is scaled from 90 to 65 nm,
the power consumptions are decreased roughly by a factor of
two.

As the line-rate increases further beyond OC-3072, we need
to increase the number of groups proportionally to meet the
bandwidth requirement and expect the power will go up propor-
tionally as the power consumption is proportional to the number
of groups.
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VI. CONCLUSION

In this paper, we have proposed a packet memory controller
that is scalable beyond OC-3072 and provides QoS to packets
with different latency (or QoS) requirements. This scheduler
takes much less SRAM area compared to existing schemes
whereas it virtually does not suffer the packet loss problem. Our
scheme well supports a large number of output queues which is
critical in the modern routers. In addition, the QoS support in
our scheme becomes critical as more internet packets become
latency sensitive.
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